Analysis of Complex Networks: Applications and Challenges

M. Dehmer

Berner Fachhochschule
UMIT, The Health and Life Sciences University, Austria

Outline

(1) Brief Introduction
2) Quantitative Graph Analysis: Problems
3) Big Data Sampling Problem and Numerical Results
(4) Are new Measures Useful?
(5) Summary, Extensions and Future Work

Part I

Brief Introduction

Application of Data Science: Quantitative Network Analysis

Various graph-based techniques have been developed. For example:

- Graph classes such as small-world and scale free to characterize real-world networks, e.g., WWW etc. (Newman, 2012)
- Graph Mining-techniques such as frequent patterns, motif search, shortest path analysis, and so forth
- Graph measures based on distances, vertex degrees, eigenvalues and entropy (see, e.g., Dehmer, Chen, Shi, 2020)
- Classical graph measures often possess inefficient time complexity
- An important problem of structural data analysis is to generate the networks exhaustively

Overview about Network Science

see (Dehmer, Emmert-Streib, 2018)

Application I: Analysis of Transportation Networks

- A transportation network is a graph $G=(V, E)$ where V are the vertices (e.g., stations, airports etc.) and E connections between those vertices (train or flight connections etc.)
- What kind of structural features of a transportation network give risk factors?
- To quantify structural information, one needs a quantitative approach
- A quantitative network measure is a mapping $I: \mathcal{G} \longrightarrow \mathbb{R}_{+}$
- Prominent examples are the Wiener index or degree measures given by $W(G):=\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} d\left(v_{i}, v_{j}\right)$ or $D\left(v_{i}\right):=\delta\left(v_{i}\right)$
- Which measure is the most efficient one?
- Problem: How vulnerable are transportation networks?
- Efficient approaches are needed to estimate the possibility of threat (Big Data!)

Software-based Approach

Problem: Finding efficient vulnerability measures, see Dehmer et al. $(2013,2018)$

Figure: The Munich subway network and possible risk factors

Application II: Stock Market Data Analysis

Goal: To avoid getting broke after the Lehman Brothers-disaster

- Most of the contributions deal with analyzing stocks one by one (one dimensional)
- Emmert-Streib and Dehmer (2014) found that relationships between stocks are crucial
- They inferred financial networks from complete NASDAQ-data for a long time interval
- They calculated a so-called reference graph G^{r} and defined comparative graph measure

$$
d(t)=d\left(G^{t}, G^{r}\right) \quad \forall t .
$$

- The interpretation of $G_{i j}^{t}$ is the probability that stock i and stock j are correlated in the considered time intervals

Result: Financial Crash Detection

Figure: Exploratory Data Analysis: Financial Crash Detection, Emmert-Streib and Dehmer (2014)

Structural Network Descriptors - Introduction

How can we quantify the structure of a network?

- Remind that a topological descriptor (measure) is a mapping $I: \mathcal{G} \longrightarrow \mathbb{R}_{+}$
- Several groups of descriptors exist, e.g., information-theoretic, non-information-theoretic, distance-based etc.
- In particular, properties of information-theoretic measures have been explored extensively:
- Chen Z., Dehmer M., Shi Y.: Bounds for degree-based Network Entropies, Applied Mathematics and Computation, Vol. 265, 2015, 983-993
- Chen Z., Dehmer M., Emmert-Streib F., Shi Y.: Entropy of Weighted Graphs with Randic Weights, Entropy, Vol. 17 (6), 2015, 3710-3723

Structural Network Descriptors - Wiener and Randić Index

- Prominent examples are the Wiener index and Randić index given by $W(G):=\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} d\left(v_{i}, v_{j}\right)$ and $R(G):=\sum_{\left(v_{i}, v_{j}\right) \in E}\left[k_{v_{i}} k_{v_{j}}\right]^{-\frac{1}{2}}$
- W and R have extensively been used to predict physico-chemical properties (e.g., boiling point) of networks (e.g., molecules or web graphs)
- Problem: To sample huge sets of structural data statistically (exhaustively generated networks) and calculate the sensitivity of such network descriptors

Example－Structural Interpretation

Graph Entropy：$l_{f}(G)=-\sum_{i=1}^{|V|} \frac{f\left(v_{j}\right)}{\sum_{j=1}^{|V|} f\left(v_{j}\right)} \log \left(\frac{f\left(v_{j}\right)}{\sum_{j=1}^{|V|} f\left(v_{j}\right)}\right)$ where $f\left(v_{i}\right):=\alpha^{c_{1}\left|S_{1}\left(v_{i}, G\right)\right|+c_{2}\left|S_{2}\left(v_{i}, G\right)\right|+\cdots+c_{\rho(G)}\left|S_{\rho(G)}\left(v_{i}, G\right)\right|}$ and $c_{k}>0,1 \leq k \leq \rho(G), \alpha>0$

First Book on Quantitative Graph Theory

EDCLIt mathisurccavoryarmicin oes

Part II

Quantitative Graph Analysis: Problems

Sources of Problems - Structural Graph Measures

- Descriptive approaches for analyzing graphs are often not applicable when analzing graphs
- Therefore, quantitative methods are needed (i.e., graph measures)

Some Problems:

- Often difficult to interpret
- Often difficult to compute (e.g., measures which are based on the automorphism group)
- Sensitivity (i.e., small changes in a graph should result in small changes of the measured value)
- Degeneracy (i.e., non-isomorphic graphs cannot be distinguished)

Uniqueness (Discrimination Power or Degeneracy) of Structural

 Graph Measures
Definition

Let $I: \mathcal{G} \longrightarrow R$ be a structural descriptor. The uniqueness (discrimination power) of I relates to the ability to discriminate non-isomorphic graphs structurally.

Remark

The degree of the degeneracy can be measured by several quantities (Konstantinova, 1996; Todeschini 1992 etc.), for example

$$
S(I):=\frac{|\mathcal{G}|-n d v}{|\mathcal{G}|}
$$

Uniqueness of Structural Graph Measures

Definition

Calculate I for all $G \in \mathcal{G}$. If $n d v=0$, then all $G \in \mathcal{G}$ must be non-isomorphic. In this case, we call / complete for the set \mathcal{G}.

- So far, no complete graph invariants (structural graph measures) have been found for general graphs.
- Hence, it is clear that any structural graph measure has a certain degree of degeneracy
- Problem: Can we find groups of measures which are highly unique for general graphs?
- Does such a measure only exist for special graph classes (e.g., isomeric structures, alkane trees etc.) ?

Example - Sensitivity

Let $\mu \delta(G):=\frac{\sum_{i} \delta_{i}}{N}$ and let $l_{\operatorname{deg}}(G):=-\sum_{i=1}^{k} \frac{\mid \delta_{i}}{N} \log \frac{\left|\delta_{i}\right|}{N}:$
(a)
G_{1}

$\mu \delta\left(G_{1}\right)=2$
$I_{\text {deg }}\left(G_{1}\right)=0$
(b)
G_{2}

$\mu \delta\left(\mathrm{G}_{2}\right)=2$
$I_{\text {deg }}\left(G_{2}\right)=1.5$
(c)
G_{3}

$$
\mu \delta\left(G_{3}\right)=2
$$

$I_{\text {deg }}\left(G_{3}\right)=1.37$
(Müller et al. 2011)

Part III

Big Data Sampling Problem

Large Scale Phenomenon

- To perform the study Dehmer et al., we applied Balaban J, Variable Zagreb index, ABC index and various graph entropies to exhaustively generated non-isomorphic graphs.
- We used exhaustively generated non-isomorphic, connected and unweighted graphs having 9 and 10 vertices. $\left|N_{9}\right|=261080$ and $\left|N_{10}\right|=11716571$!
- To generate the networks exhaustively, we have used the Nauty package due to McKay (see McKay, 2010)
- Also, we used exhaustively generated isomers and chemical alkane trees
- Important question: How strong is the dependency between the uniqueness of I and the $|\mathcal{G}|$
- To tackle this problem, we performed a statistical analysis

Exemplaric Numerical Results by Using N_{10}

- ABC index: $n d v=11539714$ and $S(A B C)=0,015095$
- Variable Zagreb index (VZI): ndv= 11704386 and $S(V Z I)=0,001040$
- Balaban J index : ndv= 11704386 and $S(J)=0,001040$
- Magnitude-based information index I_{D} index : ndv= 11716339 and $S\left(I_{D}\right)=0,000020$
- Degree-Degree Association index ($f_{f_{\hat{\otimes} \times \mathrm{P}}^{\lambda}}^{\lambda}$) ndv= 609204 and $S\left(l_{f_{\mathrm{exp}}}^{\lambda}\right)=0,948005$
- Estrada index $(E E)$: ndv $=60054$ and $S(E E)=0,875386$

Part IV

Are new Measures Useful?

Graph Polynomials

Definition

A graph polynomial is a polynomial whose coefficients are defined based on graph invariants.

Examples:

- The Wiener polynomial (also called Hosoya polynomial) has been defined by

$$
W_{G}(z):=\sum_{i=1}^{\rho(G)} d(G, i) z^{i}
$$

$\rho(G)$ is the diameter of $G=(V, E)$ and $d(G, i)$ is the number of pairs of G having distance $i, d(G, 1)=|E|$.

- Characteristic polynomial $P_{G}^{c}(z):=\operatorname{det}(A-z E)$ or distance polynomial $P_{G}^{d}(z):=\operatorname{det}(D-z E)$. A is the adjacency matrix and D the distance matrix of G.

A new Non-Standard-Idea:

Instead of using the determinant, we use the permanent of a Matrix A and define the permanental polynomial:

$$
P_{\mathrm{per}}^{M(G)}(z):=\operatorname{per}(z E-M(G))=\sum_{i=0}^{|V|} a_{i} z^{i}=0
$$

We define:

$$
\begin{gathered}
l_{1}^{M(G)}(G):=\left|z_{1}^{M(G)}\right|+\left|z_{2}^{M(G)}\right|+\cdots+\left|z_{k}^{M(G)}\right| \\
l_{2}^{M(G)}(G):=\sqrt{\mid z_{1}^{M(G)}} \mid+\sqrt{\left|z_{2}^{M(G)}\right|}+\cdots+\sqrt{\left|z_{k}^{M(G)}\right|} \\
l_{3}^{M(G)}(G):=\left|z_{1}^{M(G)}\right| \log \left(\left|z_{1}^{M(G)}\right|\right)+\left|z_{2}^{M(G)}\right| \log \left(\left|z_{2}^{M(G)}\right|\right)+\cdots+\left|z_{k}^{M(G)}\right| \log \left(\left|z_{k}^{M(G)}\right|\right)
\end{gathered}
$$

Discrimination Power of the New Measures

Descriptors \rightarrow		$l_{1}^{M(T)}$		$l_{2}^{M(T)}$	$l_{3}^{M(T)}$	
Tree classes	$\left\|T_{i}\right\|$	ndv	S	ndv	S	ndv
T_{12}	551	119	0.78403	119	0.78403	119
T_{13}	1301	417	0.67948	415	0.68101	415
T_{14}	3159	828	0.73789	826	0.738502	826
T_{15}	7741	2472	0.68066	2470	0.68092	2470
T_{16}	19320	5256	0.72795	5246	0.73852	
T_{17}	48629	14947	0.69263	14944	0.69269	5246
14944	0.72892					
T_{18}	123867	32364	0.73872	32347	0.73886	32347

Descriptors \rightarrow		$l_{1}^{M(G)}$		$l_{2}^{M(G)}$		$l_{3}^{M(G)}$	
Graph classes	$\left\|N_{i}\right\|$	ndv	S	ndv	S	ndv	S
N_{5}	21	0	1.00000	0	1.00000	0	1.00000
N_{6}	112	2	0.98214	2	0.98214	6	0.94643
N_{7}	853	0	1.00000	0	1.00000	2	0.99766
N_{8}	11117	102	0.99082	102	0.99082	109	0.99020
N_{9}	261080	630	0.99759	624	0.99761	652	0.99750

Part V

Summary, Extensions and Future Work

Summary: Theoretical Aspects

- Sampling structural data on a large scale has been intricate
- Big Data processing becomes a real challenge here
- For this, meaningful and efficient methods are needed
- All structural graph measures have a certain kind of degeneracy
- Most of the measures are highly degenerate. Only a few measures possess high discrimination power
- The discrimination power depends on the graph class
- Entropy-based measures often have high uniqueness. Particularly, this holds for partition-independent measures
- Can structural graph measures help to solve real Big Data problems in data analysis?

Applications and Future Work

- Application of structural graph measures to e.g., financial networks, command and control, communication, and surveillance networks.
- Selection of interesting data sets (data means power!)
- Careful analysis of application areas
- Theoretical Work:
- Interrelations between graph measures
- Interrelations between graph distance or similarity measures
- Statistical analysis

