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Improving health monitoring and early damage
detection in industrial fleets

Diagnostics

System health characterisation
Fault detection and classification

Prognostics

Prediction of system health state

development and remaining useful life
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Supporting informed maintenance
decision making
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Predictive Maintenance
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From physics-based to data-driven and
hybrid modelling

Component Part Subsystem Machine Fleet

Physical modelling, domain
knowledge, rule-based monitoring

Hybrid models
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Wind direction [rad]

Active power [kW]
Rotor speed [rpm]
Generator speed [rpm]
Current [A]

Power [MW]

Data-driven Al models of normal operation behaviour
Automated detection of faults and performance deficits
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Data-driven early fault detection and diagnosis in

wind turbine drive trains

* New data-driven method for unsupervised fault
detection in wind turbine gearboxes [Meyer 2022]

* Multi-task normal behaviour models simplify
condition monitoring and can achieve higher
accuracies then prior-art single-target models
[Meyer, 2021a]

» Multi-task normal behaviour models can detect faults
at least as fast as and in some cases even faster than
the prior art approaches. They can achieve the same
level of detection stability. [Meyer, 2021b]

¢ We demonstrated data-driven fault detection in
several active wind farms [Maron et al., 2022]

Accelerometer Fluid Property

Gearbox Monitoring

Gearbox Oil

Temperature

Position

Prop Feathering "\

Pressure

Blade Dynamics ™\

Accelerometer

Turbine Shroud

Transformer

Windings Temperature Monitoring I

Temperature

Stator Winding

N Accelerometer

Tower Sway

N Position

Tower Leveling




Bern University
F of Applied Sciences

Data-driven early fault detection and diagnosis in
wind turbine drive trains

Method for unsupervised fault detection without

feature definitions in wind turbine gearboxes: | o y
7 = £ = < ... Anomaly
*+ Vibration-based fault detection without the usual upfront =2 é‘% . -
definition of spectral features. CNN identifies and extracts 5
the most relevant features from the half spectrum instead, S
thus saving time and effort. g DO [ il o
+ A spectral model of the normal gearbox behaviour is e o Jest set (healthy) rergery ———
learnt from past measurements and can successfully e
discriminate damaged from healthy gearbox ‘gzoo
components. S -
* The entire half spectrum is monitored instead of the usual o . . o ol g s
focus on individual frequencies and harmonics. Anomaly score

Meyer, A., 2022, Vibration Fault Diagnosis in Wind Turbines based on Automated Feature Learning, Energies, 15(4), doi:
10.3390/en15041514.
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Single-task modelling for wind turbine
condition monitoring
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., 2021, Multi-target normal behaviour models for wind farm condition monitoring, Applied Energy, doi: 10.1016/j.apenergy.2021.117342
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Multi-task learning of normal operation behaviour can achieve
and exceed the accuracy of single-task models

Multi-task models Single-task models
P, WR, Wg, |~ Viind + Ayind P ~ Vwind + awind
Model Global Powe| Rotor Generator Current

RMSE speed speed Model RMSE
Decision 0.13 0.13 0.10 0.10 0.18
jree Decision tree 0.13
Random 0.13 0.13 0.10 0.10 0.17 Random forest 0.13
forest KNN 0.13
KNN 0.13 0.13 0.11 0.10 0.18 MLP 0.14
MLP 0.14 | 015 0.11 0.11 0.19 CNN 0.16
) LSTM 0.13
CNN 0.15 0.16 0.12 0.11 0.20
LSTM 0.14 0.13 0.11 0.11 0.18

Multi-task normal operation models match the accuracies of their single-task
counterparts and can even surpass them

Meyer, A., 2021, Multi-target normal behaviour models for wind farm condition monitoring, Applied Energy, doi:
10.1016/j.apenergy.2021.117342
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Fault diagnostics in gearboxes based on multi-

task learning
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. Adding 50 trends with random onset times
. Measure detection delay and detection stability
. Two different alarm criteria

Time

Tgear» Toit, Ter ~ Ywina + @wing + Tair
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Meyer, A., 2021, Early fault detection with multi-target neural networks, Lecture Notes in Computer Science, Vol. 12953, Springer, doi: 10.1007/978-3-030-86970-0_30
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Application in wind farms

Power Time Series of affected WT
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Maron, J., D. Anagnostos, B. Brodbeck, A. Meyer (2022): Artificial intelligence-based condition monitoring and predictive
maintenance framework for wind turbines, Journal of Physics Conference Series, doi: 10.1088/1742-6596/2151/1/012007.
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