No GPS Drone Navigation

researchXchange, Biel 13.05.2022

BFH > HuCE > cpvrLab Benjamin Fankhauser & Marcus Hudritsch

Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences

cpvrLab: Who We are:

- cpvrLab stand for: Computer Perception & Virtual Reality Lab
- We are an Applied Research & Development Group within the HuCE Institute.
- We currently have 520% R&D employees:

C. Blanc Cand. PhD. MSc. Microtech.

Fankhauser MSc. CS

MSc. CS

P. v. Niederhäusern MSc. CS

ern L. Renfer MSc. Robotics

C. Wyss BSc. CS

M. v. Wattenwyl Apprentice

cpvrLab: Who We are:

- We are also a Specialization within the BFH Computer Science department.
- We are currently 6 lecturers:

M. Hudritsch

J. Eckerle

C. Furrer

U. Künzler

and try to teach **image analysis & image synthesis** to ~40 students in 2 semesters:

Can we localize a drone using its camera?

the base of the second second

Can we localize a drone using its camera?

• Could we fly from A to B without GPS?

Outline

- Absolute and relative pose estimation
- Autoencoders
- Results

Feasibility study: "Can a drone navigate inside a GPS denied environment?" armasuisse 2019

Flight from A to B: Conditions:

- We can choose the flight path
- We know position A and B
- We have swisstopo data
- We have sensors:
 - Barometer (height)
 - Compass (yaw)
 - Stabilized Camera (pointing downwards)

• Solve for: x, y.

Localization Problem

- Short term localization:
 - **Relative** position from frame to frame
 - ORB Slam, Optical flow, etc
 - Error sums up over frames (Drift)
 - Can (and will) loose tracking

- Long term localization:
 - Find **absolute** position
 - Few literature
 - Outdoor environment is challenging

Baseline: Template Matching

(requires same orientation and scale)

T:

- Compute similarity score at each location
- Maximum score is returned location
- 56% Recall* on frames on validation flight

*56% of the frames were correctly localized (within 50m to the actual GPS location)

I:

Baseline: Template Matching

Drone video

Reduction approach

Matches reduced version of video on reduced version of map

Auto Encoder

- Bottleneck in middle enforces compression
- Denoising,
 Compression, ...

Deep Fake Approach

- Compress images using auto encoders.
- Swisstopo ortho image (o) and video (v) share same point in latent space (z) at the same location!

Improvement: heavy image reduction

- Destroy anything unrelated to localization.
- Preserve anything related to localization.

- Reduces houses to black squares
- No cars, No details
- Reduce trees to circles or forests
- Unify color of fields

Supervised Approach

- Swisstopo ortho image (o) and video (v) share same point in latent space (z) at the same location!
- Decode to the abstract map (a')

Güera, David, and Edward J. Delp. "Deepfake video detection using recurrent neural networks." 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE, 2018.

Deepfake Training Losses

We trained only convolutions, invariant to the size of the input. We apply the learnt convolutions on the full 4x4 km patch:

In action

Precise Matching

- Crop around estimated position
- Run full resolution template matching

Camera center

Our prediction

(GPS position at orange dot) (large yellow circle has a radius of 12.5m)

Results

• Trained on 3 flights. Reported numbers on flight 4:

Method	Recall Centers	Precision tiles	Fatal errors (>50m)
Template Matching	0.567	0.540	0
Autoencoder	0.533	0.493	0
DF w/o abstract maps	0.767	0.693	0
CycleGAN*	0.633	0.557	-
pix2pix*	0.633	0.557	-
DF with abstract maps	0.950	0.927	0

* Thomas Vögelin, MSE Project 1 "GPSIess drone navigation"

Flight 2.1: Tissot Arena

• Construction sites

Flight 2.2: Biel city center

• Large shadows

Flight 2.3: Biel harbor

• Special place

Flight 2.4: Sutz forest

• No features

Results on challenging test flights

Flight	Recall*	False Positives*
Sutz 4	98.3%	1
Biel Tissot Arena	47.5%	0
Biel city center	82.0%	0
Biel harbor	80.0%	1
Sutz forest	30.0%**	0

* False Positives: predicted position was wrong

** With relative tracking and trust region: limit the search space depending on last localization

Future

- Part 3: Localization in mountainous or alpine regions
- Part 4: Build an onboard processing box that outputs the location.
- Part 5: Build a No-GPS-drone!

Thank you.

Visit our YouTube channel: <u>https://www.youtube.com/c/HuCEcpvrLab</u>

or watch our summary videos:

https://www.youtube.com/watch?v=illBzMu8QDY

https://www.voutube.com/watch?v=5JEFe2_L4So

Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences